Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Ren-Zhi Hu,^a Jian-Hua Wang,^b Kui Cheng,^a* Zhi-Bin Li,^c Zheng Yan^a and Jing-Jing Liu^a

^aDepartment of Chemistry, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China, ^bBioengineering College of Chongqing University, Chongqing 400044, People's Republic of China, and ^cDepartment of the Environment and Urban Construction, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China

Correspondence e-mail: kui_cheng@126.com

Key indicators

Single-crystal X-ray study $T=293~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.009~\mathrm{\mathring{A}}$ R factor = 0.061 wR factor = 0.184 Data-to-parameter ratio = 18.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

μ -Terephthalato- $\kappa^2 O^1$: O^4 -bis[bis(propane-1,3-diamine- $\kappa^2 N$,N')iron(II)] bis(perchlorate)

The dinuclear title complex, $[Fe_2(C_8H_4O_4)(C_3H_{10}N_2)_4]$ - $(ClO_4)_2$, is centrosymmetric about the central aromatic ring. The Fe centre is five-coordinated square pyramidal, being coordinated by four N atoms from two propane-1,3-diamine ligands and an O atom from a monodenate carboxylate residue.

Received 20 March 2006 Accepted 3 April 2006

Comment

Ferrous solutions are normally unstable in air and are easily oxidized to produce ferric compounds, especially in neutral or alkaline solutions. The title ferrous complex, (I), was formed and isolated from a mildly alkaline solution of ammonia and methanol.

The complex (Fig. 1) is disposed about a centre of inversion and features two Fe[NH₂(CH₂)₃NH₂]₂ entities bridged by a terephthalate anion; the charge-balance in the structure is provided by two perchlorate anions. The Fe—N bond lengths are in the range 2.024 (5)–2.047 (5) Å (Table 1). The associated N—C bond distances are experimentally equivalent, precluding imine functionality in any of the propane-1,3-diamine ligands. The Fe—O1 bond distance is 2.267 (4) Å, with the O1 atom occupying the apical position in the distorted square-pyramidal geometry about the Fe centre; the Fe atom lies 0.1131 (3) Å out of the basal plane defined by the four N atoms. The bond angles at Fe1 (Table 1) are consistent with a regular geometry.

Experimental

Terephthalic acid (0.5 mmol, 83 mg) and FeSO₄·7H₂O (1 mmol, 278 mg) were suspended in a mixed solvent of 30% aqueous ammonia and methanol (1:1 v/v, 10 ml). To this solution was added, with stirring, an acetonitrile solution (5 ml) of NaClO₄ (1 mmol, 124 mg) and propane-1,3-diamine (2 mmol, 144 mg). The suspension was stirred for 20 min and filtered. After keeping the filtrate in air for 10 d, large black block-shaped crystals of (I) formed at the bottom of

© 2006 International Union of Crystallography All rights reserved

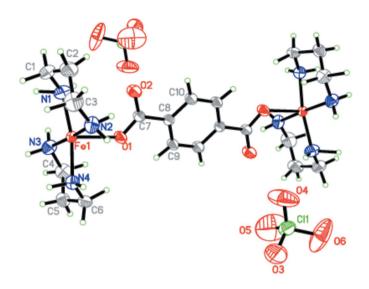


Figure 1

The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. The unlabelled atoms are related by the symmetry code (1 - x, 1 - y, -z).

the vessel. The crystals were isolated, washed three times with water and dried in a vacuum desiccator over CaCl₂ (yield 81.2%). Analysis found: C 31.04, H 5.77, N 14.26%; calculated for C₂₀H₄₄Cl₂Fe₂N₈O₁₂: C 31.15, H 5.75, N 14.53%.

Crystal data

2	
$[Fe_2(C_8H_4O_4)(C_3H_{10}N_2)_4](ClO_4)_2$	Z = 2
$M_r = 771.23$	$D_x = 1.554 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 10.165 (2) Å	$\mu = 1.11 \text{ mm}^{-1}$
b = 10.143 (2) Å	T = 293 (2) K
c = 16.012 (3) Å	Block, black
$\beta = 93.05 (3)^{\circ}$	$0.34 \times 0.28 \times 0.22 \text{ mm}$
$V = 1648.6 (6) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector	3980 measured reflections
diffractometer	3781 independent reflections
ω scans	2463 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.025$
(SADABS; Sheldrick, 1996)	$\theta_{\rm max} = 27.5^{\circ}$
$T_{\min} = 0.696, T_{\max} = 0.784$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0957P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.061$	+ 1.6922 <i>P</i>]
$wR(F^2) = 0.184$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\text{max}} < 0.001$
3781 reflections	$\Delta \rho_{\text{max}} = 0.65 \text{ e Å}^{-3}$
200 parameters	$\Delta \rho_{\min} = -0.58 \text{ e Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.024 (3)

Table 1 Selected geometric parameters (Å, °).

Fe1-O1	2.267 (4)	N1-C1	1.479 (8)
Fe1-N1	2.030 (4)	N2-C3	1.472 (9)
Fe1-N2	2.024 (5)	N3-C4	1.493 (7)
Fe1-N3	2.047 (5)	N4-C6	1.483 (7)
Fe1-N4	2.024 (5)		
O1-Fe1-N1	90.57 (18)	N2-Fe1-N3	90.7 (2)
O1-Fe1-N2	97.4 (2)	N2-Fe1-N4	168.6 (2)
O1-Fe1-N3	94.04 (18)	N3-Fe1-N4	88.4 (2)
O1-Fe1-N4	94.06 (15)	Fe1-N1-C1	119.4 (4)
N1-Fe1-N2	87.5 (2)	Fe1-N2-C3	121.2 (5)
N1-Fe1-N3	175.23 (19)	Fe1-N3-C4	116.6 (4)
N1-Fe1-N4	92.5 (2)	Fe1-N4-C6	116.2 (3)

H atoms were positioned geometrically and constrained to ride on their parent atoms at C-H distances of 0.93-0.97 Å and N-H = 0.90 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars.

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

 $> 2\sigma(I)$